当前位置:慈溪市东亿通信设备厂 >三网融合楼道箱 > 三网融合楼道箱

产品详情

三网融合楼道箱

关键词:三网融合楼道箱

详细信息

  三网融合楼道箱随着光波通信系统技术的发展,光波系统在通信网中的应用得到了相应的发展。现在世界上许多国家都将光波系统引入了公用电信网、中继网和接入网中,光纤通信的应用范围越来越广。进入21世纪,光纤通信更是突飞猛进地向前发展。实现非常高速的传输速率,不断提升系统容量是光纤通信永恒的追求。在单通道10Gb/s和40Gb/s通信系统得到大规模应用之后,单通道100Gb/s的光纤通信系统已从2011年开始在国内外得到开通和运营。传输系统的关键技术,如调制码型、相干检测等在100Gb/s时代得到了广泛的统一,并且随着硬和软FEC的大量应用,100Gb/s系统传输能力和传输质量相比10Gb/s和40Gb/s系统有了质的飞跃,有望开创光通信的下一个黄金时代。

  三网融合楼道箱细节图片

  三网融合楼道箱产品介绍

  光纤通信技术的发展十分迅速,在通信领域已经起到了举足轻重的作用,发展前景十分广阔。光纤通信系统的组成图:简化的光纤通信系统模型,由图中可以看出一个光纤通信系统通常由电发射机、光发射机、光、电和由光纤构成的光缆组成。电发射机输出的调制信号送入光发射机,光发射机主要有驱动电路和光源,其作用是用电发射机输入的电信号对光源进行调制,使光源产生出与电信号相对应的光信号进入光纤,由光纤构成的光缆实现光信号的传输。光主要有光电检测器和放大电路,当光信号通过光纤到达光时,光电检测器把光信号转换为相应的电信号,经过放大和信号处理后进入电。在远距离光纤通信系统中,为了补偿光纤的损耗并消除信号失真与噪声的影响,光缆经过一定距离须加装光中继器。

  三网融合楼道箱主要特点

  光中继器有两种结构形式:一种是光电光中继器,由光检测器、电信号放大器、更新电路、驱动器和光源等组成,其作用是将光信号变成电信号,经放大和更新,然后再变换成光信号送入下一段光纤中传输;另一种是用光纤放大器实现在线光信号放大实际的光纤通信系统远比上述模型复杂。根据不同的需要,光纤通信系统还包括各种无源光器件。光波分复用系统还包括波分复用器/解复用器等。利用光进行通信并不是一个新概念,我国古代使用的烽火台就是大气光通信的好例子。那时候,大部分文明社会已经使用烟火信号传递单个的信息,后来的旗语、灯光甚至交通红绿灯等均可划入光通信的范畴,但可惜它们所能传递的距离和信息量都十分有限。近代光通信的雏形可追溯到1880年Bl)明的光电话,他用阳光作为光源、硒晶体作为光接收检测器件,通过200m的大气空间成功地传送了语音信号。

  虽然在以后的几十年中,科技工作者对Be的光电话具有浓厚的兴趣,但由于缺乏合适的光源及光在大气中传输的严重衰减性,这种大气通信光电话未能像其他电通信方式那样得到发展。19世纪30年代电报的出现用电取代了光,开始了电信时代。1876年电话的发明引起了通信技术本质的变化,电信号通过连续变化电流的模拟方式传送,这种模拟电通信技术支配了通信系统达100年之久。20世纪电话网的发展导致了电通信系统的许多改进,用同轴电缆代替了双绞线大大提高了通信容量,较好代同轴电缆在1940年投入使用。由于需要传送的信息数量急剧增长,对通信的带宽提出了更高的要求,需要使载波频率进一步提高才能满足要求。但是当频率超过10MHz,使用同轴电缆的传统方式通信损耗较大,这种限制导致了微波通信系统的发展。

  在微波通信系统中,利用1~10GHz的电磁波及合适的调制技术传递信号。早的微波通信系统于1948年投入运营,从此以后,微波通信系统得到了较大的发展。微波通信系统依然存在着成本高、中继距离短、载波频率受限制的缺点系统的通信容量用比特率距离积(BL)表示,B为比特率,L为中继间距。20世纪后半叶人们开始认识到,如果用光波作载波,BL积可能增加几个数量级。然而当时发展光通信技术存在两个难以攻克的难题:较好个难题是无法找到适合光通信的低损耗传输介质,第二个难题是无合适的相干光源,使得光通信技术发展停滞不前现代光纤通信的发展历程1966年7月是光纤通信发展历史中的一个里程碑,英籍华人高锟博士在Proc.IEE杂志上发表了一篇十分有名的《用于光频的光纤表面波导》,该文从理论析证明了用光纤作为传输介质以实现光通信的可能性,设计了通信用光纤的波导结构,更重要的是,他科学地预言了制造通信用低损耗光纤,即通过加强原材料提纯、加入适当的掺杂剂,可把光纤的衰减系数降低20dB/km以下。

  20世纪60年代可能制造的光纤损耗超过了1000dB/km,高锟的预言被认为是可望而不可即的。1970年光纤制造技术终于出现了打破,美国康宁公司根据高锟的设想,使用改进型化学气相沉淀法,制造出了世界上较好根超低损耗光纤,其在1m附近波长区光纤损耗降低到约20dB/km。虽然康宁公司制造出的光纤只有几米长,但这证明了高锟预言的正确性,这是光纤制造技术的大打破。20世纪60年代激光技术的发明解决了第二个问题。随后,人们的注意力集中到寻找用激光进行通信的途径。1970年,美国贝尔实验室研制出世界上较好只在室温下连续工作的钾(GaAs)半导体激光器,为光纤通信找到了合适的光源器件。小型光源和低损耗光纤的同时问世,在全世界范围内掀起了发展光纤通信的。

  进展确实很快,在不到20年的时间,比特率-距离积增加了几个数量级,在技术上经历了各具特点的五个发展阶段(或五代光波通信系统)。(1)1978年工作于0.8m的较好代光波通信系统正式投入商业应用,其比特率在20100Mb/s之间,大中继间距约10km,大通信容量(BL)约500Mb/s?km。与同轴电缆通信系统相比,中继间距长,投入资金和维护费用低,是工程和商业运营追求的目标。(2)但是0.8m并非损耗小的佳工作波段,早在1970年时人们就认识到,使光波系统工作于1.3m时,光纤损耗lt;1.0dB/km,且有低色散,可大大增加中断距离,但是1.3pm的半导体激光器尚未研制成功,直到1977年这种激光器才问世。

  接着在20世纪80年代初,早期的采用多模光纤的第二代光波通信系统问世,其中继距离超过了20km,但由于多模光纤的模间色散,早期的系统的比特率限制在100Mb/s以下。采用单模光纤能克服这种限制,一个实验室于1981年演示了比特率为2Gb/s,传输距离为44km的单模光波实验通信系统,并很快引入商业领域,至1987年1.3pm单模第二代光波系统开始投入商业运营,其比特率高达1.7Gb/s,中继距离约50km(3)第二代光波系统中继距离受1.3μm附近光纤损耗(典型值为0.5dB/km)限制,理论研究发现,石英光纤低损耗在1.55m附近,实验技术上于1979年就达到了0.2dB/km的低损耗。然而由于1.55m处高的光纤色散,而当时多纵模同时振荡的常规IngaAsP半导体激光器的谱展宽问题尚未解决。

  在100Gb/s系统部署的同时,产业界已经就超过100Gb/s(目前以400Gb/s为主)技术展开了讨论和标准化工作。目前,光传送网除了承载语音、专线等传统电信业务以外,其越来越多的需要是为蓬勃发展的IP数据业务提供快速、灵活、高效的传输通道,并且要努力降低自身成本,为的全业务经营提供便利。基于以上要求,近年来光传送网的发展体现出非常高速、智能化和分组化三大主要特征。近年来,随着高清视频,在线游戏和高可靠数据业务的飞速增长,骨干光传网的网络容量急需扩容。DWDM/OTN系统已经呈现出长距离和大容量传输的趋势。电信网络中以GE/10GE/40GE、2.5Gb/s/10Gb/s/40Gb/s接口为代表的大颗粒宽带业务大量涌现,飞速增长的数据流量需求直观地引导着光传送网络的发展,推动光传输技术不断前进。

热门动态更多
联系我们更多
  • 公司名称:慈溪市东亿通信设备厂
  • 联系人:李春
  • 联系电话:15888598688 15888598688
  • 地址:浙江省宁波市慈溪市观城工业区
网上有害信息举报
x

填写举报信息

提示:请填写您的实名信息,中国114黄页承诺对您的信息进行保密